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THEORY OF WING-BODY DRAG AT SUPERSONIC SPEEDS 

At subsonic speeds the pressure drag arising from the thickness of 
the body or wings is negligible so long as the shapes are sufficiently 
w e l l  streamlined to avoid flow separation. In that range there exists 
no possibility of either favorable or adverse interference on the pres- 
sure distributions themselves. If one body is so placed as to receive 
a drag from the pressure field of another then the second body is sure 
to receive a corresponding increment of thrust from the first. 

At supersonic speeds this tolerance, which was permitted the 
designer, disappears> *and the drag becomes sensitive to the shape and 
arrangement of the bodies. 
thickness ratio, but nevertheless there exist arrangements in which a 
large cancellation of drag occurs. 
sweptback e a g  and the Busemann biplane. 

To be sure, the primary factor here is the 

Examples of the latter are: the 

Recently R. T. Whitcomb (ref. 1) has shown how the drag at tran- 
soni'c speeds may be reduced to a surprising extent by simply cutting 
out a portion of the fuselage to compensate for the area blocked by 
the ying. 
theoretical aspects of this method of drag reduction and to show how 
the basic idea may be extended to higher speeds in the supersonic range. 

The purpose of the present paper is to discuss some of the 

Whitcombts deduction of the "area rule" was based on consideratkns 
of stream tube area and the phenomenon of "choking" -which follow from 
one-dimensional-flow theory. 
dimensional-flow field must obey the law of one-dimensional flow. 
we cannot actually determine the three-dimensional field on this basis 
alone,.nevertheless it provides a good starting point for OUT thinking. 
The results demonstrate again the effectiveness of basic and simple 
considerations. 

Each individual stream tube of a three- 
While 

While one-dimensional-flow theory thus provides 2 clue to the area 
rule, the necessary principle appears more specifically in the three- 
dimensional-flow theory. 
l i nea r  theory, if followed toward the limit as M approaches 1.0 (from 
above), show that the wave drag of a system of wings and bodies depends 
solely on the longitudinal area distribution of the system as a whole. 
This was first noted by W. D. Hayes in his 1946 thesis (ref. 2). 

I 
I Thus, the formulas for wave drag given by 

However, 



NACA RM A53H18a 2 
i. 

because of the limitations of the theory at transonic speeds, this result 
was not thought to be of practical significance. 
(ref. 3), E. W. Graham (ref. 4), and others, restricting themselves to 
very narrow shapes, expressed the wave drag in terms of the longitudinal 
area distribution for Mach numbers above 1.0, where the linear theory 
has a better justification. 

Later G. N. Ward 

It should be noted, however, that both of the problems cited are 
limiting cases of the more general problem of supersonic drag and it 
should be borne in mind that only in certain cases has it been possible 
to reduce the general theoretical formulas to the form of an area rule. 
It can be shown that the flow field about any system of bodies may be 
created by a certain distribution of sources and sinks over the surfaces 
of the bodies. Hayes' formula and the formulas given in reference 5 
relate the drag of such a system to the distribution of these singulari- 
ties. To obtain a formula for the wave drag in terms of area distri- 
butions we have to adopt a simplified relation between the source 
strength and the geometry of the bodies, namely, that the source strength 
is proportional to the normal component of the stream velocity at the 
body surface. There are examples (e.g., Busemann biplanes and ducted 
bodies) for which this assumption is not  valid. If, on the other hand, 
we limit ourselves to thin symmetrical wings mounted on vertically sym- 
metrical fuselages, there are indications that a good estimate of the 
wave drag at supersonic speeds can be obtained on the basis of the simp%..- 
fied relation assumed, 

*. 

Following Hayes' method of calculation, we find that at M = 1.0 the 
expression for the wave drag of a system of wings and bodies reduces to 
KQrmgn's well-known formala for the wave drag of a slender body of revo- 
lution, that is, 

+2/2 +1/2 
s" (x)  s"(x,) log [X-X,] dXdXl $1,2 

I .  

Here S(x) represents the total cross-sectional area intercepted by a 
plane perpendicular to the stream at the station x 
S"(x) is the second derivative of S with respect to x. Following 
Sears (ref. 6) we may expand 
this way a formula for the drag which is completely analogous to the well- 
known formula for the induced drag of a wing in terms of its spanwise 
load distribution. Thus, if we write 

(see fig.) and 

S*(x) in a Fourier series and obtain in 

x = 212 cos cp 

and 

S ' ( x )  = CAn sin n (p 
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we obtain for the wave resistance I '  
I 
I ' .  D = -  cnAn2 

8 

Of all the terms of the series, each contribiites t.n the Grag, but silly 
A, and 4 
Thus, to achieve a small drag with a given base area, or with a given 
over-all volume within the given length, the higher harmonics in the 
curve S'(x) should be suppressed. This formula enables us to charac- 
terize the smoothness of a given shape in a quantitative fashion. 

contribute to the volume or the base area of the system. 

To extend these considerations to supersonic speeds we have to 
consider a series of cross sections of the system made, not by planes 
perpendicular to the stream but by planes inclined at the Mach angle, 

GRADIENT OF AREA 

-;a2 

EQUIVALENT BODY OF REVOLUTION 

z 
2 T 
FWRIERS SERIES; 

-- 

OPTIMUM SHAPE; 

s'oo = A~ sin 2(P 
(SEARS-HAACK BODY ) 

S'tx) = CAn sin ncp 
2 x = 2 coscp 

WAVE DRAG: (M-4.0) 

Calculation of wave drag for M +1.0. 

or "Mach planes." By means of a set of parallel Mach planes (see follow- 
ing fig.) we construct an "equivalent body of reyolytion," using the 
intercepted areas, and compute the drag by von Karman's formula. 
theoretical basis of this step is the fact that the comp1pt.e three- 
dimensional disturbance field may be constructed by the superposition of 
elementary one-dimensional disturbances in the form of plane waves 

placed at various angles around the x axis. In constructing the flow 

The 

. (ref. 7). It is evident that the set of parallel Mach planes may be 

, 
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Area d is t r ibu t ion  given by intersect ions of Mach planes. 

f i e l d  it i s  necessary t o  superimpose disturbances a t  a l l  of these angles 
and, i n  computing the  drag, t o  consider the drag of a l l  the equivalent 
bodies of revolution. The f i n a l  value of the drag i s  simply the average 
of the values obtained through a complete ro ta t ion  of t he  Mach planes. 

I n  order t o  make these statements more specific,  we may wri te  the 
equation of one such Mach plane as follows: 

X = x-yt COS 8 - Z I  s i n  8 

where 
of the Mach plane. By assigning d i f fe ren t  values t o  X while keep- 
ing 8 constant, we obtain a s e r i e s  of p a r a l l e l  planes a t  t he  same 
angle 8 around the x axis.  By assigning d i f fe ren t  values t o  8 
while keeping X a constant, we obtain a s e t  of planes enveloping t h a t  
Mach cone whose apex l i e s  a t  the point X = x. 

y’ = J E  y, z t  = JK z, and 8 i s  the angle of ro ta t ion  

Selecting a value of 8, we cut  through the wing-body system with 
a s e r i e s  of planes corresponding t o  d i f fe ren t  values of X. The t o t a l  
intercepted area i n  each plane is  then equated t o  t h e  a rea  intercepted 
by t h i s  plane passing through the equivalent body of r evoh t ion .  
denote the area intercepted obliquely by 
i s  defined by 

If we  
s(X,8), then the a rea  S(X,8) 

S = s s i n  p 
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where 
intercepted by normal planes passing through the equivalent.-body of rev- 
o lu t ion  on the assumption t h a t  t h i s  body i s  slender. 

c~ is the Mach angle (i .e. ,  s i n  c~ = l / M ) .  Thus, S . is  the area 

Again, we write 

s ' ( x , ~ )  = - a s(x,e) = CA, s i n  ncp 
ax 

X cos cp = - 
XO 

Here, however, both the length 2X0 and the shape of the equivalent 
body vary with the angle 
revolution, which we may denote by D'(8) i s  then determined by apply- 
ing Sears' formula: 

8. The drag of each equivalent body of 

The t o t a l  drag of the wing-body system is  the average of a l l  these values 
between = 0 and 8 = 2fi, t ha t  is, 

I n  general, the  coeff ic ients  A, w i l l  be functions of the angle 
of projection 8. However, calculation shows t h a t  the first two 
coef f ic ien ts  A, and A2 
area and the volume v. Thus, 

are again related i n  a simple way t o  the base 

4 v  
= 2A1 - -  x x , z  

None of the higher coeff ic ients  contribute t o  the base area or  volume, 
but they invariably contribute t o  the drag. 

Tire n~les fsr cbttliiliig a iuw wave drag now reduce t o  the ru l e  t h a t  
each of the equivalent bodies obtained by the oblique projections should 
be as smooth and slender as possible, the "smoothness" again being 
re la ted  t o  an absence of higher harmonics i n  the se r i e s  expression 
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for S'(X). It should be noted that in this theory, the equivalent c 

bodies of revolution do not have a physical significance. The concept 
is simply an aid in visualizing the magnitude of the drag of the complete 
system. 

To check the agreement between these theoretical formulas for the 
wave drag and experimental values, we have compared our calculations 
with the results of tests made on falling models at Ames Laboratory. 
This comparison was made by George H. Holdaway who supplied the accom- 
panying illustration. More complete details of the experimental 

0 
0 
0 a 
w" 

.04 

I- z 
w.02 
0 
LL. 
LL 
w 0 

THEORY 
--- EXPERIMENT 

g-021,  I ,,///p--, 
0 
[r : O .9' 1.0 1.1 1.2 . _  

MACH NUMBER, M MACH NUMBER, M 

Comparison of theory with results of Ames Laboratory drop tests. 

conditions and the models tested will be found in his forthcoming report. 
In some of these cases it was found necessary to retain more than 20 
terms of the Fourier series in order to obtain a convergent expression 
for the drag. 

Considering the variety of the shapes represented here, the agree- 
ment is certainly as good as we ought to expect from our linear simpli- 
fications. 
cases in which the drag is small. 

The agreement is naturally better in those interesting 

The following figure shows an analysis of one of Whitcomb's experi- 
ments. The linear theory, of course, shows the transonic drag rise 
simply as a step at M = 1.0. We may expect such a variation to be 
approached more closely as the thickness vanishes. 
values here a nonlinear theory would be needed. 

To represent actual 
For many purposes it 
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1 -  

will be sufficient to esti- 
mate roughly the width of 
the transonic zone by con- 
siderations such as those 
given in reference 8. In the 
present case it will be noted 
that agreement with the linear 
theory is reached at Mach num- 
bers above a b ~ u t  1.08, m(? t h e  
linear theory clearly shows 
the effect of the modification. 

For further theoretical 
studies of wing-body drag, 
shapes have been selected which 
are especially simple analyti- 
cally, namely, the Sears-Haack 
body and biconvex wings of 

LINEAR THEORY 

A h  
.004 

O.88 .92 -96 1.00 1.04 1.08 1.12 
M 

Comparison of Whitcomb’s experiments 
with theory. 

elliptic plan form, having aspect ratios of 2.54 and 0.635. The follow- 
ing figure shows the effect of wing proportions on the variation of wave 
drag with Mach number, both with and without the Whitcomb modification: 

i 
MODIFIED 

----_ 

t 
UNMODIFIED Ip--4 -----___ MODIFIED 

M 

I 

1.0 1 L2 I 1.4 I 1.6 I 

Effect of Whitcomb modification on calculated wave drag. 

In each case the modification has the effect of reducing the wave drag 
to that of the body alone at M = 1.0. In the case of the low-aspect- 
ratio wing this drag reduction remains effective over a considerable 
range of higher Mach numbers. 
the drag increases sharply at higher’speeds, so that at M = 1.6 the 
modification nearly doubles the wave drag. 

With the higher aspect ratio, however, 

The rapid increase of drag in the case of the high-aspect-ratio 
wing is, of course, the result of the relatively abrupt curvatures 
introduced into the fuselage lines by the cutout. Such abrupt cutouts 
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are necessarily associated with wings having small fore and aft dimen- 
sions, that is, unswept wings of high aspect ratio. 

These considerations led to the problem of determining a fuselage 
shape for such wings that is better adapted to the higher Mach numbers. 
The first step in this direction is, obviously, simply to lengthen the 
region of the cutout - thus avoiding the rapid increase of drag with 
Mach number. The problem of actually determining the best shape for the 
fuselage cutout at any specified Mach number has been undertaken by 
Harvard Lomax and Max. A. Heas.let at Ames Laboratory. Their solution 
of this problem provides a definite method for determining the distri- 
bution of sources and sinks along the fuselage axis that will achieve 
a minimum value of the drag for a given wing shape at any specified Mach 
number. Furthermore, by admitting singularities of higher order - 
quadrupoles, etc., which would distort the rotational symmetry of the 
fuselage, they have been able to show that the wave drag of a wing-body 
system can be reduced, in principle at least, to a minimum value associ- 
ated with the given over-all length and volume of the system, that is, 
to the value for a simple Sears-Haack body containing the whole volume 
of the system.l 

-- 

By adopting our simplified relation between the source strength and 
the body shape, we may describe the result of this theory by a rela- 
tively simple concept, which is illustrated by the figure below. For 

A 

C 
MACH PL 

OF 
.ANE 

-ASF I / 

/I 0 T 2 7  

e 

Design of fuselage modification for specified Mach number. 

modifications of the first type, the problem is to determine the 
area ASF 
given wing. (See above fig.) Selecting a station along the fuselage 
lThis value is, of course, not an absolute minimum for a given volume 

to be removed from the fuselage to best compensate for a 

since, as shown by Ferrari, the wave drag of a body can be reduced to 
zero by special volume distributions (see ref. 9 ) .  - 
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ing the fuselage cutout for a 
specific Mach number, 1.2 in this 
case. The lower curve is an 
envelope showing the minimum 
values that can be achieved by 
such a radially symmetric cutout. 

-04 

C D  -02 -  

.01 

**"Eo3- 

The figure below shows the 
magnitude of the gain that is 
possible by higher order modi- 

There are three lower bounds 
fications of the f'uselage shape. 
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ORIGINAL 

MODIFIED FOR M -  1.0 

' F D  FOR M =  1.2 

---_ ----_ - 
- i - E N V E L O P E  

i 
I 

9 

.-. 
tain minimum diameter in order 
to preserve a real shape. Envelopes for drag at design Mach 

number. 
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AMES 2 x 2'WIND TUNNEL 

UNMODIFIED MOD FOR ~ = l  

CD 

MOD FOR M=L 
I I I I I 

.8 .9 1.0 1.1 1.2 1.3 1.4 
M 

0 

- Experiments on bodies with elliptic wings. 

.03 r 

C D  ' O 2 1  1.0 

T UNMODIFIED MOD FOR M-1.2 n 

MOD FOR M = l . O  

L 
.8 .9 I .o 1.1 1.2 1.3 1.4 

M 

Calculated values for bodies with elliptic 
wings. 

In order to test 
this theory of deter- 
mining optimum body 
shapes we have started 
a program, using models 
similar to those inves- 
tigated theoretically. 
Several of these models 
have already been tested 
in the Ames 2- by 2-foot 
wind tunnel, with results 
that agree quite well 
with calculations made 
on the assumptions given 
earlier. Shown here are 
the experimental and 
theoretical curves. The 
aspect ratio of the wing 
in these preliminary 
cases is not sufficiently 
high (AR = 2) to enable 
really striking gains to 
be shown. However, it 
is evident that the 
calculated differences 
are all reproduced in 

The experimental series 
will include models 
having higher aspect 
ratios, and we expect 
more significant gains 
to appear. 

the experimental values. i 

There are, of course, examples of wing-body systems which would 
hardly benefit by any change in sha$e of the fuselage. 
decide whether a gain is possible, or worthwhile, by comparing the actual 
wave drag of the system with that of a Sears-Haack body containing the 
over-all volume of the system. In the case of the 6 3 O  wing-body combi- 
nation, which has been described in several previous reports, this com- 
parison yields 0.0045 as a lower bound for the wave-drag coefficient 
and 0.007 for the actual value. In such cases, for which the wave drag 
is initially very low, further reduction by reshaping the fuselage is 
not worthwhile. 

It is easy to 

It is clear from the foregoing, however, that appreciable savings 
in drag can be made in many cases by a suitable shaping of the fuselage. 
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Unswept wings of high aspect ratio are benefited most and require the 
most careful consideration of the fuselage shape. 

These new developments ilhatrate, again, the fact that the dis- 
turbance fields at transonic and supersonic speeds are essentially three- 
dimensional phenomena. It was not long ago that our ideas concerning 
the wing section -which had their origin in the older incompressible 
flow theory - had to be relinquished because of the predominating 
effects cf t he  %<rig phm form. 
and the fuselage together. 

Now we must learn how to design the wing 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., July 8, 1953 
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